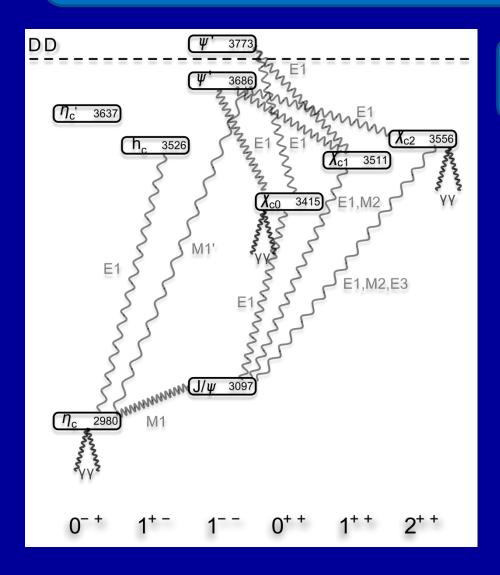
Excited radiative transitions in charmonium from lattice QCD

Christopher Thomas, Jefferson Lab

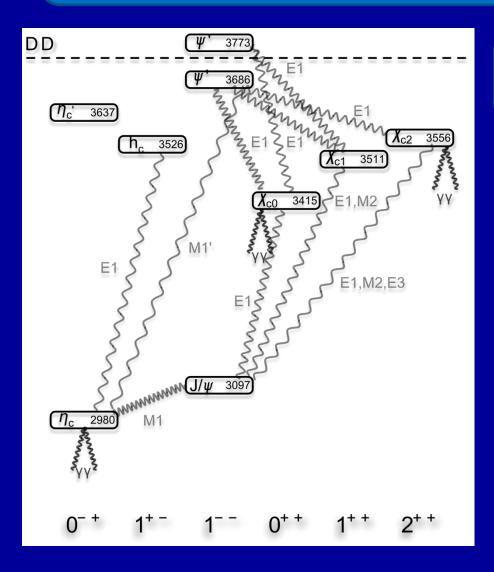
thomasc@jlab.org

QWG Workshop, Fermilab, May 2010

With Jo Dudek and Robert Edwards
Previous work: Nilmani Mathur, David Richards and
Ermal Rrapaj (and *Hadron Spectrum Collaboration*)

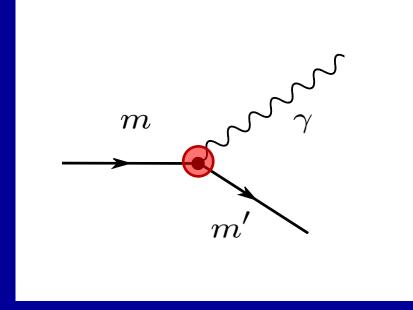

Outline

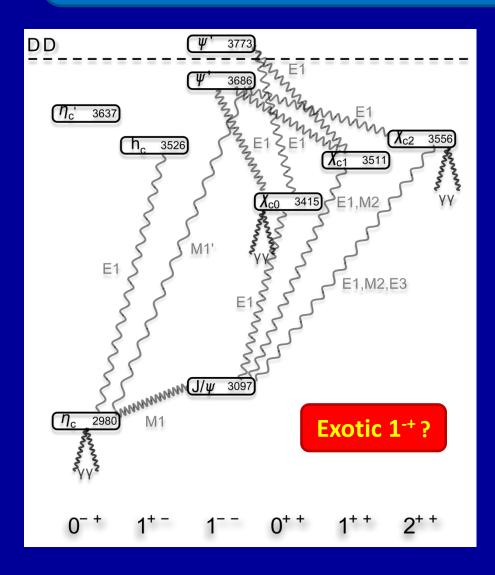
Introduction and motivation


Method

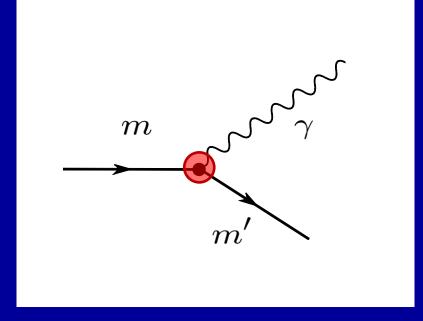
Result highlights and interpretations

Summary and outlook




Below DD threshold radiative transitions have significant BRs

Below DD threshold radiative transitions have significant BRs


Meson – Photon coupling

Below DD threshold radiative transitions have significant BRs

Meson – Photon coupling

Broader Picture

Develop Lattice QCD techniques

Test in the charmonium system

Apply to lighter mesons...

Broader Picture


Develop Lattice QCD techniques

Test in the charmonium system

Apply to lighter mesons...

Photoproduction at GlueX (JLab 12 GeV upgrade)

Exotic 1⁻⁺?

Progress on the light meson spectrum in Dudek et al PRL103 262001 (2009) and arXiv:1004.4930.

Photocouplings on the lattice

Two-point correlation functions with a large basis of operators \rightarrow energies and matrix elements (Z)

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \Gamma_i \overleftrightarrow{D}_j \overleftrightarrow{D}_k \dots \psi(x)$$

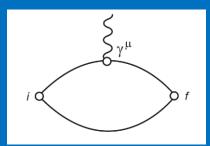
$$C(t) = \langle 0|O_i(t)O_j(0)|0 \rangle \qquad Z_i^{(n)} \equiv \langle 0|O_i|n \rangle$$

Photocouplings on the lattice

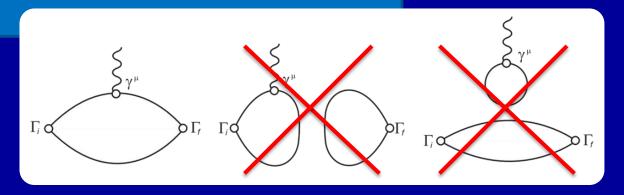
Two-point correlation functions with a large basis of operators \rightarrow energies and matrix elements (Z)

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \Gamma_i \overleftrightarrow{D}_j \overleftrightarrow{D}_k \dots \psi(x)$$

$$C(t) = \langle 0|O_i(t)O_j(0)|0 \rangle \qquad Z_i^{(n)} \equiv \langle 0|O_i|n \rangle$$


$$C(t) = <0|O_i(t)O_j(0)|0>$$

$$Z_i^{(n)} \equiv < 0|O_i|n>$$


$$C_{ij}(t_f, t, t_i) = <0|O_i(t_f)|\bar{\psi}(t)\gamma^{\mu}\psi(t)|O_j(t_i)|0>$$

Photocouplings from three-point correlators

Need energies and Z's from two-point analysis

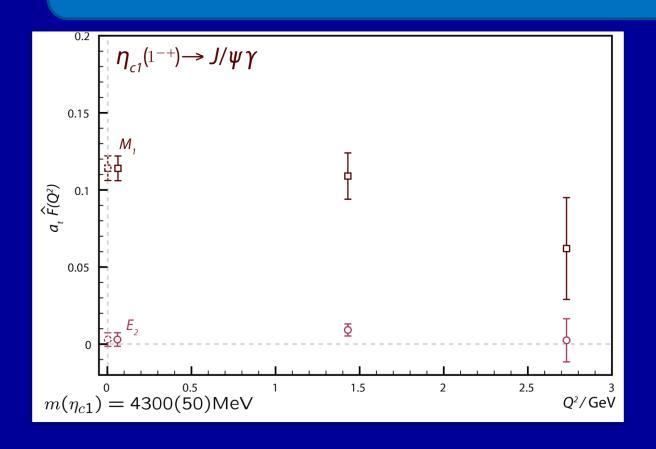
- Caveats:
 - Quenched (no quark loops; no light quarks at all)
 - One lattice spacing (a_t⁻¹ = 6.05 GeV)
 - One volume (L_s ≈ 1.2 fm)
 - · Only connected diagrams

Only some highlights here; more results and details in Dudek, Edwards & CT, PR **D79** 094504 (2009)

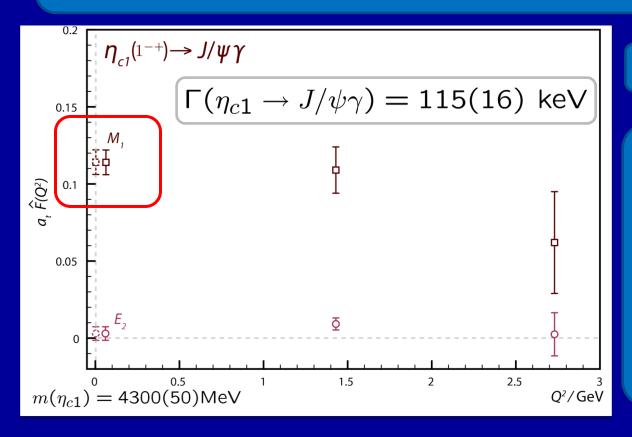
Also: Dudek et al PR D77 034501 (2008); Dudek & Rrapaj PR D78 094504 (2008)

Exotic 1⁻⁺

Spectrum analysis: $1^{-+} \eta_{c1}$ state found at 4300(50) MeV


Exotic quantum numbers – can't be fermion-antifermion pair

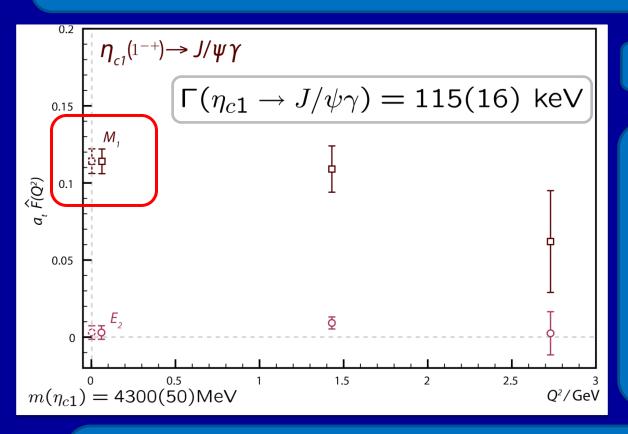
Can't be a molecular/multi-quark state in quenched lattice calc.


→ Strongly suggests a hybrid

What about radiative transitions?

Exotic 1⁻⁺ – Vector 1⁻⁻

Exotic 1⁻⁺ – Vector 1⁻⁻


M₁ multipole dominates

Same scale as many measured conventional charmonium transitions

BUT very large for an M₁ transition

$$\Gamma(J/\psi \to \eta_c \gamma) \sim 2 \text{ keV}$$

Exotic 1⁻⁺ – Vector 1⁻⁻

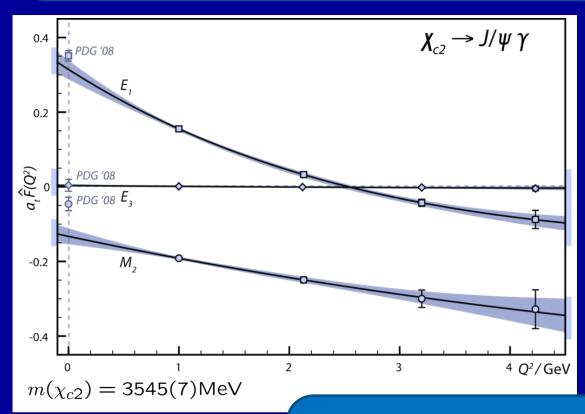
M₁ multipole dominates

Same scale as many measured conventional charmonium transitions

BUT very large for an M₁ transition

$$\Gamma(J/\psi \to \eta_c \gamma) \sim 2 \text{ keV}$$

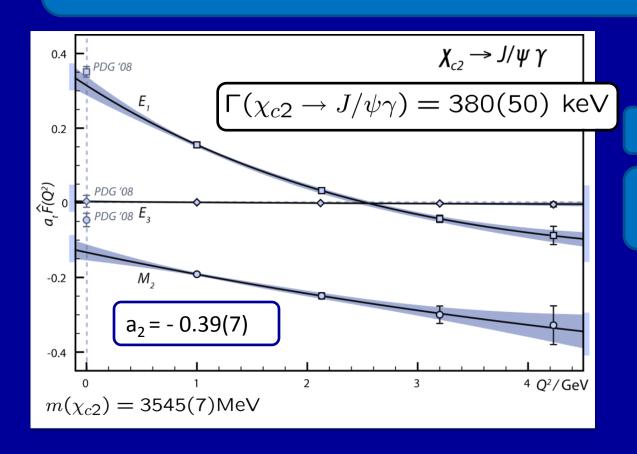
- Usually $M_1 \rightarrow spin flip (e.g. {}^3S_1 \rightarrow {}^1S_0) \rightarrow 1/m_c suppression$
- Spin-triplet hybrid → extra gluonic degrees of freedom
 → M₁ transition without spin flip → not suppressed


E₁, M₂, E₃

Three tensor states found in spectrum analysis:

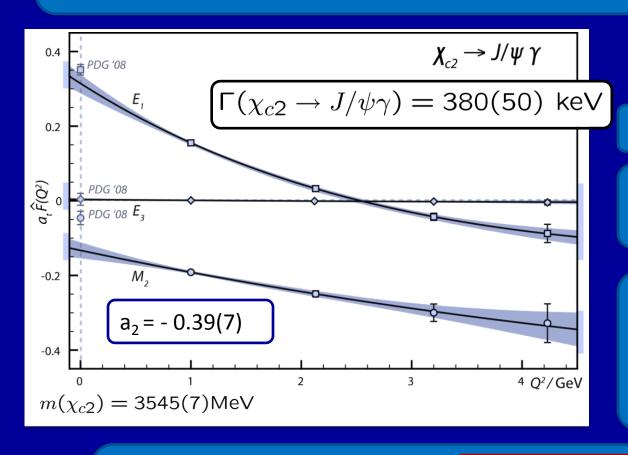
$$\chi_{c2} \approx 3545(7) \text{ MeV}$$

$$\chi'_{c2} \approx 4115(28) \text{ MeV}$$


$$\chi''_{c2} \approx 4165(30) \text{ MeV}$$

 E_1, M_2, E_3

- Lattice: discrete set of allowed momenta
- Can't calculate at $Q^2 = 0$ and so extrapolate:


$$F_k(Q^2) = F_k(0) (1 + \lambda Q^2) e^{-\frac{Q^2}{16\beta^2}}$$

E₁, M₂, E₃

PDG08: 406(31) keV

Quark models (1^3P_2) ~ 290 – 420 keV

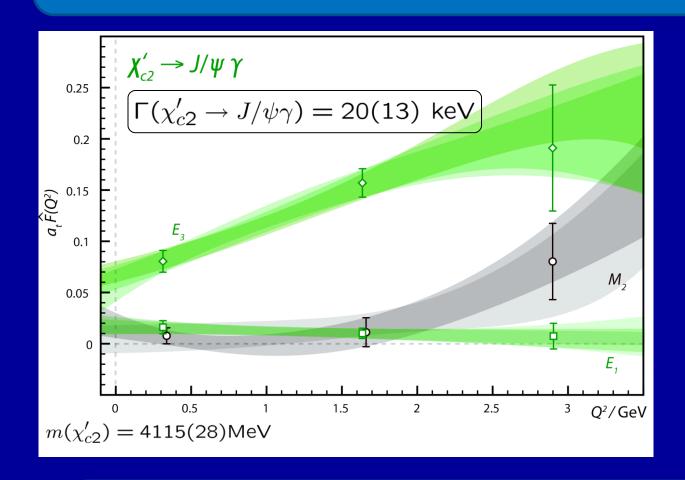
 E_{1} , M_{2} , E_{3}

PDG08: 406(31) keV

Quark models (1^3P_2) ~ 290 – 420 keV

 $a_2 = M_2 / \sqrt{(E_1^2 + M_2^2 + E_3^2)}$

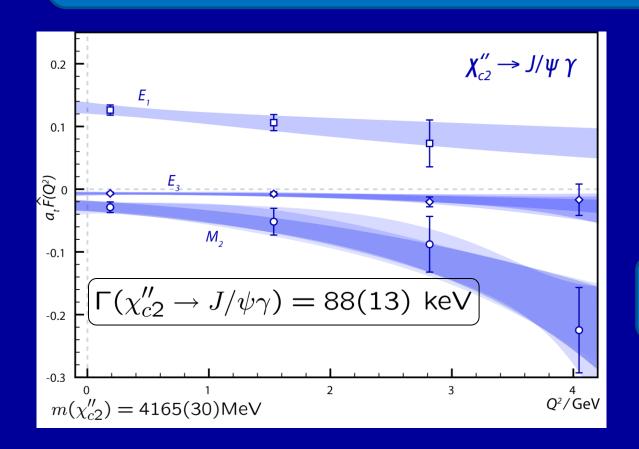
PDG08: -0.13(5)


CLEO: -0.079(19)

[CLEO PRD80 112003 (2009)]

Same hierarchy as expected:

 $|E_1(0)| > |M_2(0)| >> |E_3(0)|$


Ratio | M₂/E₁ | is considerably larger than experiment

 E_1, M_2, E_3

Completely different hierarchy!

 $|E_3(0)| > |M_2(0)|, |E_1(0)|$

 E_1, M_2, E_3

Quark models (2³P₂) $\sim 50 - 80 \text{ keV}$

Reverted to expected hierarchy: $|E_1(0)| > |M_2(0)| >> |E_3(0)|$

In general:
$$J_i = J_f \otimes k \quad (k > 0)$$

 $E_1, M_2, E_3 \quad (k = 1,2,3)$

```
In general: J_i = J_f \otimes k \quad (k > 0)
 E_1, M_2, E_3 \quad (k = 1,2,3)
```

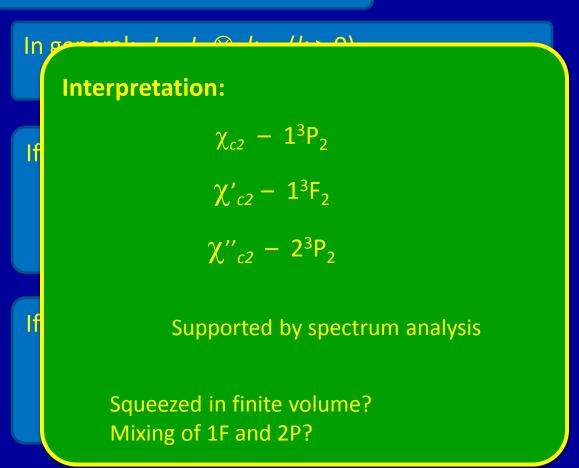
```
If only a single quark is involved ({}^{3}P_{2} \rightarrow {}^{3}S_{1}):

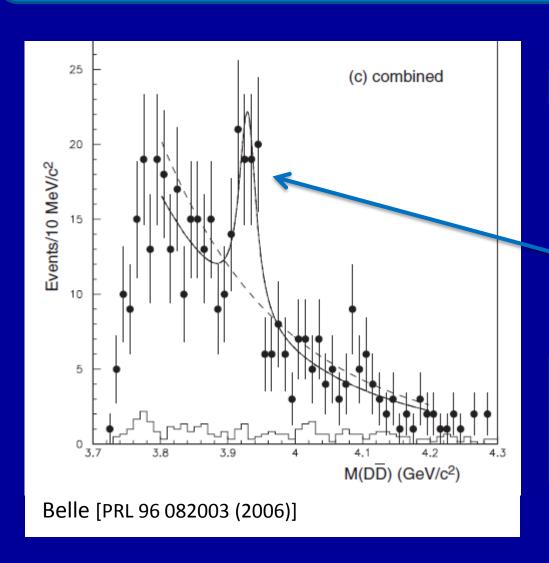
j = 3/2 \rightarrow j = 1/2

k = 1,2 only and E_{3} = 0

|E_{1}(0)| > |M_{2}(0)| >> |E_{3}(0)|
```

```
In general: J_i = J_f \otimes k \quad (k > 0)
 E_1, M_2, E_3 \quad (k = 1,2,3)
```


```
If only a single quark is involved ({}^{3}P_{2} \rightarrow {}^{3}S_{1}):


j = 3/2 \rightarrow j = 1/2

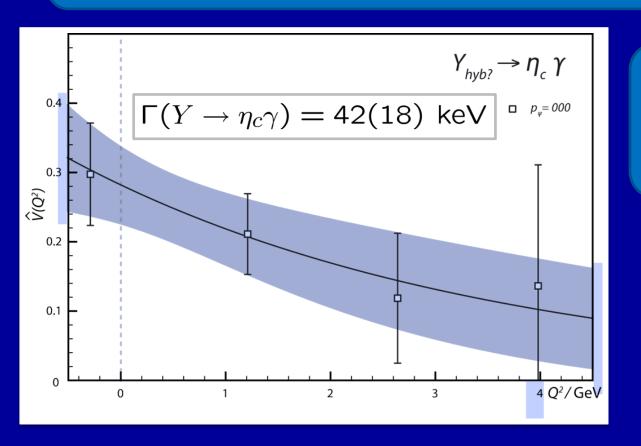
k = 1,2 only and E_{3} = 0

|E_{1}(0)| > |M_{2}(0)| >> |E_{3}(0)|
```

If instead tensor is
$3F_2$
 (${}^3F_2 \rightarrow {}^3S_1$):
 $j = 5/2 \rightarrow j = 1/2$
 $k = 2,3$ only and $E_1 = 0$
 $|E_3(0)| > |M_2(0)| >> |E_1(0)|$

Belle $\gamma\gamma o Dar{D}$

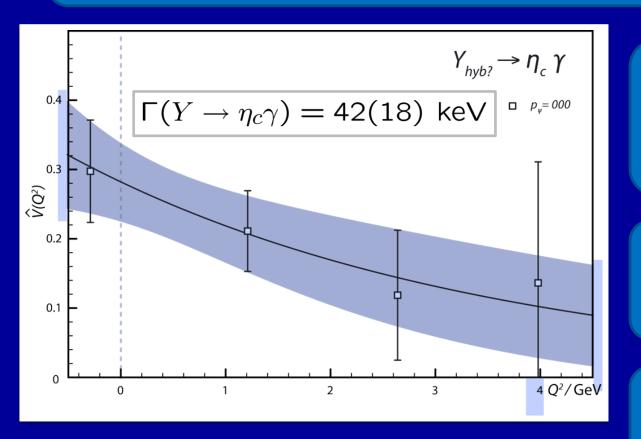
 $\chi'_{c2} \sim 3930 \text{ MeV}$


Needs lattice calc of two-photon coupling [extension of Dudek and Edwards **PRL 97** 172001 (2006)]

Spectrum results [PR **D77** 034501 (2008), PR **D78** 094504 (2008)]:

Level	Mass / MeV	Suggested state	Model assignment
0	3106(2)	J/ψ	$1^{3}S_{1}$
1	3746(18)	ψ' (3686)	$2^{3}S_{1}$
2	3846(12)	$\psi_3(3^{})$	lattice artifact
3	3864(19)	$\psi^{\prime\prime}$ (3770)	$1 {}^{3}D_{1}$
4	4283(77)	ψ ('4040')	$3^{3}S_{1}$
5	4400(60)	Y	hybrid

Significant overlap with operator $\sim [D_i, D_j] \sim F$


Only M₁

Much larger than other $1^- \rightarrow 0^+ M_1$ transitions

 $\Gamma(J/\psi o \eta_c \gamma) \sim 2 \text{ keV}$

Only M₁

Much larger than other $1^- \rightarrow 0^{-+} M_1$ transitions

$$\Gamma(J/\psi \to \eta_c \gamma) \sim 2 \text{ keV}$$

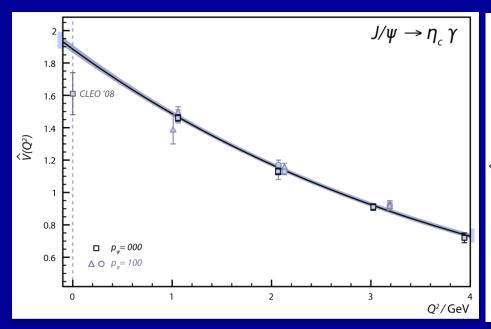
Spectrum analysis suggests a vector hybrid (spin-singlet)

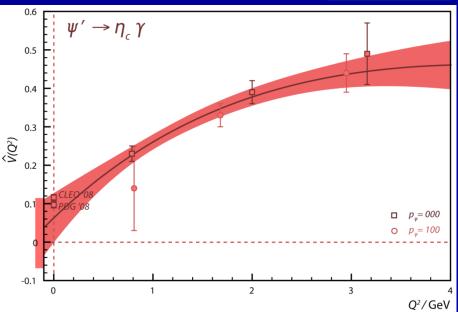
Analogous to 1⁻⁺ hybrid to vector trans:
M₁ with no spin flip

c.f. flux tube model 30 - 60 keV

Summary and Outlook

Summary

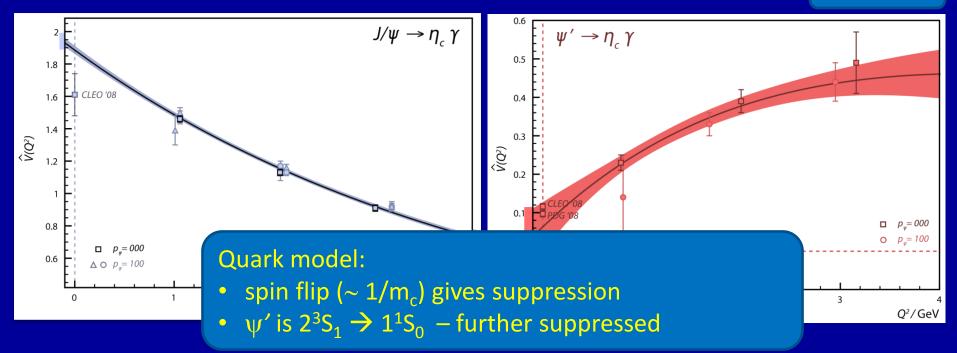

- Method successful: first calc. of excited meson rad. trans. on lattice
- Hybrid photocoupling is large: $\Gamma(\eta_{c1} \to J/\psi \gamma) \sim 100 \text{ keV}$
- M₁ transitions: $\psi o \eta_c \gamma$
- Non-exotic vector hybrid candidate $\Gamma(Y \to \eta_c \gamma) = 42(18)$ keV
- E₁, M₂, E₃ multipoles; 2³P₂, 1³F₂ states in $\chi_{c2} \rightarrow J/\psi \gamma$
- Comparison with models


Outlook

- Systematically improve (unquenched and using 'distillation')
- Apply to lighter mesons (spectrum results) + charmonium (in progress)

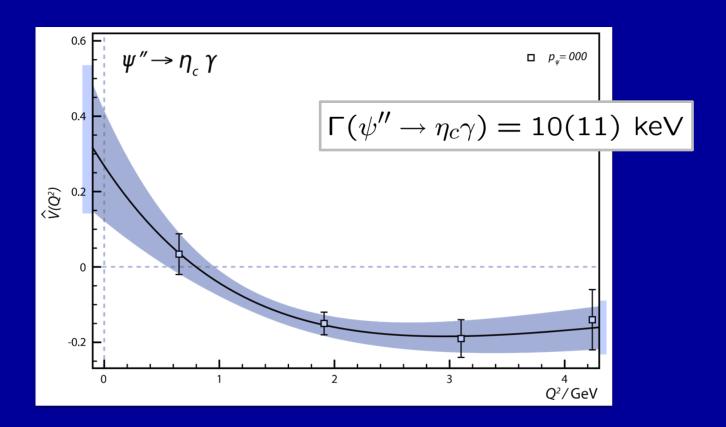
Extra Slides

Only M₁



Γ / keV	Lattice	Exp.	Barnes, God 'NR'	lfrey, Swanson 'GI'	Eichten et. al.
$J/\psi o \eta_c \gamma$	2.51(8)	1.85(29) (CLEO-c)	2.9	2.4	1.92
$\psi' o \eta_c \gamma$	0.4(8)	0.95(16) (PDG08) 1.37(20) (CLEO-c)	4.6, 9.7	9.6	0.91

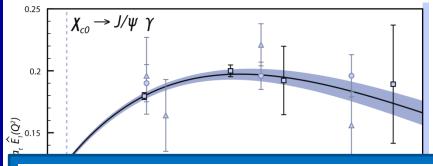
[CLEO PRL 102 011801 (2009)]

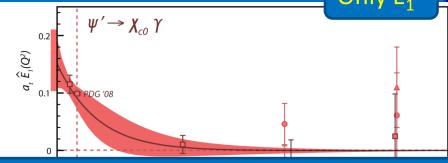

Only M₁

Γ / keV	Lattice	Exp.	Barnes, Goo	lfrey, Swanson 'GI'	Eichten et. al.
$J/\psi o \eta_c \gamma$	2.51(8)	1.85(29) (CLEO-c)	2.9	2.4	1.92
$\psi' o \eta_c \gamma$	0.4(8)	0.95(16) (PDG08) 1.37(20) (CLEO-c)	4.6, 9.7	9.6	0.91

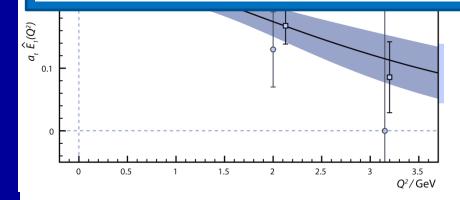
[CLEO PRL 102 011801 (2009)]

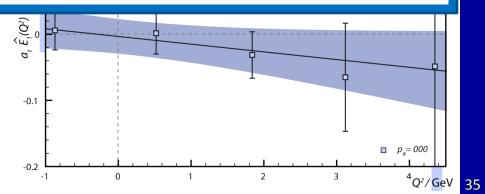
Only M₁

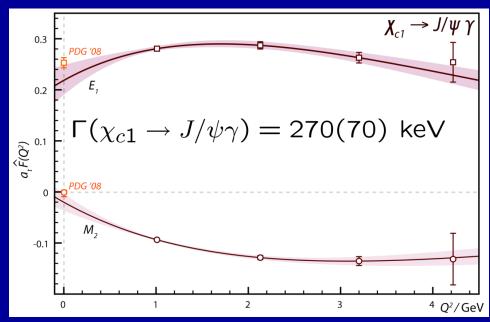

Quark model: $1^3D_1 \rightarrow 1^1S_0$ has same leading Q² behaviour as $2^3S_1 \rightarrow 1^1S_0$

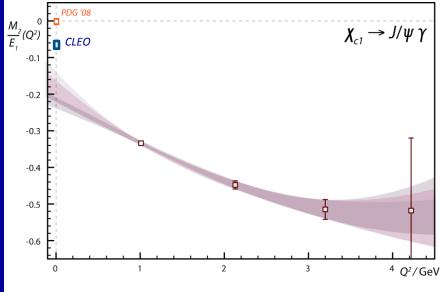

Scalar 0⁺⁺ – Vector 1⁻⁻ Only E₁ 0.25 $\psi' \rightarrow \chi_{c0} \gamma$ $\chi_{c0} \rightarrow J/\psi \ \gamma$ $a_{r} \stackrel{\circ}{E}_{1}(Q^{2})$ 0.2 PDG '08 $a_{t} \stackrel{\bullet}{E_{t}} (Q^{2})$ ₫ PDG '08 -0.1 $p_{\psi} = 000$ $p_{\psi} = 000$ $\triangle O p_{\psi} = 100$ 0.05 -0.2 3.5 1.5 2.5 0.5 2 2.5 3.5 *Q*²/GeV 0.5 1.5 2 Q²/GeV 0.2 $Y_{hyb?} \rightarrow \chi_{c0} \gamma$ $\psi'' \rightarrow \chi_{c0} \gamma$ $p_{w} = 000$ 0.3 o $p_{w} = 100$ 0.1 CLEO '06 $a_{t} \hat{E}_{t}^{(Q^{2})}$ $a_{\rm t} \, \widehat{E}_{\rm t}(Q^2)$ 0.1 -0.1 0 -0.2 3.5 0.5 2.5 3 1.5 0 2 ⁴Q²/GeV 34 3

Q²/GeV


Scalar 0⁺⁺ – Vector 1⁻⁻




Γ / keV	Lattice	Exp. (PDG08)	Barnes, G 'NR'	odfrey, Swanson 'GI'	Eichten et. al.
$\chi_{c0} \to J/\psi(1^3 S_1) \gamma$	199(6)	131(14)	152	114	120, 105
$\psi'(2^3S_1) \to \chi_{c0}\gamma$	26(11)	30(2)	63	26	46, 38
$\psi''(1^3D_1) \to \chi_{c0}\gamma$ $\psi''(3^3S_1) \to \chi_{c0}\gamma$	265(66)	199(26)	403 0.27	213 0.63	287
$Y o \chi_{c0} \gamma$	≲ 20				



Axial 1⁺⁺ – Vector 1⁻⁻

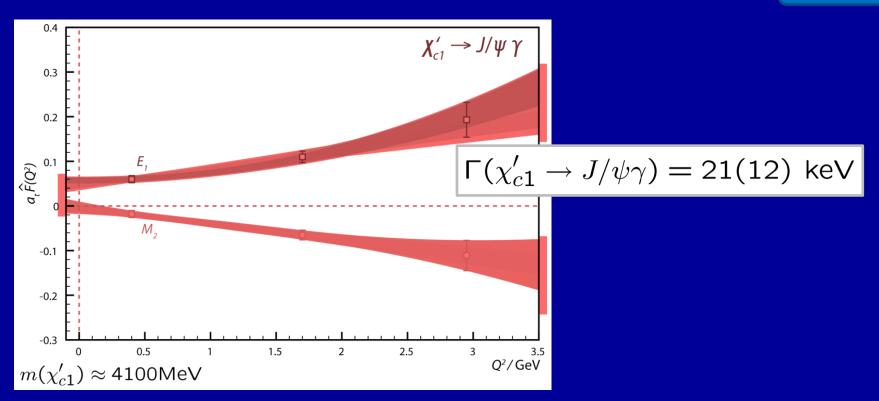
 E_{1} , M_{2}

c.f. PDG08: 320(25) keV

c.f. quark models $(1^{3}P_{1}) \sim 215 - 314 \text{ keV}$

Expected hierarchy: $|E_1(0)| > |M_2(0)|$

$$a_2 = M_2 / \sqrt{(E_1^2 + M_2^2)}$$


PDG08: -0.002^{+0.008}-0.017

CLEO: -0.063(7)

[CLEO PRD80 112003 (2009)]

Axial 1++ - Vector 1--

 E_{1} , M_{2}

c.f. quark models $(2^3P_1) \sim 14 - 71 \text{ keV}$